ObjectiveThis study introduces the complete blood count (CBC), a standard prenatal screening test, as a biomarker for diagnosing preeclampsia with severe features (sPE), employing machine learning models.MethodsWe used a boosting machine learning model fed with synthetic data generated through a new methodology called DAS (Data Augmentation and Smoothing). Using data from a Brazilian study including 132 pregnant women, we generated 3,552 synthetic samples for model training. To improve interpretability, we also provided a ridge regression model.ResultsOur boosting model obtained an AUROC of 0.90±0.10, sensitivity of 0.95, and specificity of 0.79 to differentiate sPE and non-PE pregnant women, using CBC parameters of neutrophils count, mean corpuscular hemoglobin (MCH), and the aggregate index of systemic inflammation (AISI). In addition, we provided a ridge regression equation using the same three CBC parameters, which is fully interpretable and achieved an AUROC of 0.79±0.10 to differentiate the both groups. Moreover, we also showed that a monocyte count lower than 490/mm3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$490 /mm^{3}$$\\end{document} yielded a sensitivity of 0.71 and specificity of 0.72.ConclusionOur study showed that ML-powered CBC could be used as a biomarker for sPE diagnosis support. In addition, we showed that a low monocyte count alone could be an indicator of sPE.SignificanceAlthough preeclampsia has been extensively studied, no laboratory biomarker with favorable cost-effectiveness has been proposed. Using artificial intelligence, we proposed to use the CBC, a low-cost, fast, and well-spread blood test, as a biomarker for sPE.
Read full abstract