We report a study on the hydrogen bonding mechanisms of three aliphatic alcohols (2-propanol, methanol, and ethanol) and one diol (ethylene glycol) in water solution using a time-domain ellipsometer in the THz region. The dielectric response of the pure liquids is nicely modeled by the generalized Debye-Lorentz equation. For binary mixtures, we analyze the data using a modified effective Debye model, which considers H-bond rupture and reformation dynamics and the motion of the alkyl chains and of the OH groups. We focus on the properties of the water-rich region, finding anomalous behavior in the absorption properties at very low solute molar concentrations. These results, first observed in the THz region, are in line with previous findings from different experiments and can be explained by taking into account the amphiphilic nature of the alcohol molecules.
Read full abstract