BackgroundThe Middle East is one of the most vulnerable regions to the impacts of climate change, yet evidence of the heat-related mortality remains limited in this area. Our present study investigated the heat-mortality association in Jordan and the potential modifying effect of greenness, population density and urbanization level on the association. MethodsFor each of the 42 included districts, daily meteorological and mortality data from 2000 to 2020 were obtained for the warmest months (May to September). First, a distributed lag non-linear model was applied to estimate the district level heat-mortality association, then the district specific estimates were pooled using multivariate meta-regression models to obtain an overall estimate. Last, the modifying effect of district level greenness, population density and urbanization level was examined through subgroup analysis. ResultsWhen compared to the minimum mortality temperature (MMT, percentile 0th, 22.20 °C), the 99th temperature percentile exhibited a relative risk (RR) of 1.34 (95 % CI 1.23, 1.45). Districts with low greenness had a higher heat-mortality risk (RR 1.39, 95 % CI 1.22, 1.58) when compared to the high greenness (RR 1.28, 95 % CI 1.13, 1.45). While heat-mortality risk did not significantly differ between population density subgroups, highly urbanized districts had a greater heat-mortality risk (RR 1.41, 95 % CI 1.23, 1.62) as compared to ones with low levels of urbanization (RR 1.32, 95 % CI 1.13, 1.55). Districts with high urbanization level had the highest heat-mortality risk if they were further categorized as having low greenness (RR 1.63, 95 % CI 1.30, 2.04). ConclusionExposure to heat was associated with increased mortality risk in Jordan. This risk was higher in districts with low greenness and high urbanization level. As climate change-related heat mortality will be on the rise, early warning systems in highly vulnerable communities in Jordan are required and greening initiatives should be pursued.