IntroductionGiven the absence of curative interventions and the rising global incidence of dementia, research is increasingly focusing on lifestyle factors for prevention. However, identifying shared environmental risk for dementia, next to individual factors, is crucial for optimal risk reduction strategies. Therefore, in the present study we investigated the association between air pollution, cognitive functioning, and markers of structural brain damage. MethodsWe used cross-sectional data from 4,002 participants of The Maastricht Study on volumetric markers of brain integrity (white and grey matter volume, cerebrospinal fluid volume, white matter hyperintensities volume, presence of cerebral small vessel disease) and cognitive functioning (memory, executive functioning and attention, processing speed, overall cognition). Individuals were matched by postal code of residence to nationwide data on air pollution exposure (particulate matter < 2.5 μm (PM2.5), particulate matter <10 μm (PM10), nitrogen dioxide (NO2), soot). Potentia linear and non-linear associations were investigated with linear, logistic, and restricted cubic splines regression. All analyses were adjusted for demographic characteristics and a compound score of modifiable dementia risk and protective factors. ResultsExposure to air pollutants was not related to cognitive functioning and most brain markers. We found curvilinear relationships between high PM2.5 exposures and grey matter and cerebrospinal fluid volume. Participants in the low and high range of exposure had lower grey matter volume. Higher cerebrospinal fluid volumes were only associated with high range of exposure, independent of demographic and individual modifiable dementia risk factors. After additional post hoc analyses, controlling for urbanicity, the associations for grey matter volume became non-significant. In men only, higher exposure to all air pollutants was associated with lower white matter volumes. No significant associations with white matter hyperintensities volume or cerebral small vessel disease were observed. DiscussionOur findings suggest that higher PM2.5 exposure is associated with more brain atrophy.
Read full abstract