Sodium thiosulfate (Na2S2O3) is a clinically established drug with antioxidant and sulphide-releasing properties. Na2S2O3 mediated neuro- and cardioprotective effects in ischemia/reperfusion models and anti-inflammatory effects in LPS-induced acute lung injury. Moreover, Na2S2O3 improved lung function during resuscitation from hemorrhagic shock in swine with pre-existing atherosclerosis, characterized by decreased expression of cystathionine γ-lyase (CSE), a major source of hydrogen sulfide (H2S) synthesis in the vasculature. Based on these findings, we investigated the effects of Na2S2O3 administration during resuscitation from trauma-and-hemorrhage in mice under conditions of whole body CSE deficit. After blast wave-induced blunt chest trauma and surgical instrumentation, CSE knockout (CSE-/-) mice underwent 1 h of hemorrhagic shock (MAP 35 ± 5 mm Hg). At the beginning of resuscitation comprising retransfusion, norepinephrine support and lung-protective mechanical ventilation, animals received either i.v. Na2S2O3 (0.45 mg g-1, n = 12) or vehicle (saline, n = 13). Hemodynamics, acid-base status, metabolism using stable isotopes, and visceral organ function were assessed. Blood and organs were collected for analysis of cytokines, mitochondrial respiratory capacity, and immunoblotting. Na2S2O3 treatment improved arterial paO2 (P = 0.03) coinciding with higher lung tissue glucocorticoid receptor expression. Norepinephrine requirements were lower in the Na2S2O3 group (P < 0.05), which was associated with lower endogenous glucose production and higher urine output. Na2S2O3 significantly increased renal tissue IκBα and heme oxygenase-1 expression, whereas it lowered kidney IL-6 and MCP-1 levels. Na2S2O3 exerted beneficial effects during resuscitation of murine trauma-and-hemorrhage in CSE-/- mice, confirming and extending the previously described organ-protective and anti-inflammatory properties of Na2S2O3. The findings make Na2S2O3 a potentially promising therapeutic option in the context of impaired CSE activity and/or reduced endogenous H2S availability.