Uranium is the core material for the development of the nuclear industry, but its irreversible radiation damage poses a significant threat to human health. In this context, an innovative dual-mode colorimetric and electrochemical sensor was developed for the detection of uranyl ions (UO22+), utilizing a covalent organic framework@gold nanoclusters (AuNCs@COF) composite. The synthesis of AuNCs@COF was simple, and the incorporation of AuNCs imparted the composite with exceptional peroxidase-like catalytic activity and enhanced electrochemical properties. By regulating the adsorption and desorption of aptamers on the AuNCs@COF surface, both peroxidase-like activity and conductivity were modulated, enabling the detection of UO22+ utilizing colorimetric and electrochemical dual signals. Under optimal conditions, the sensor revealed a broad linear detection range and a low detection limit, with ranges of 1.36 × 10-10-1.36 × 10-5mol/L for colorimetric detection and 5.0 × 10-10-2.5 × 10-5mol/L for electrochemical detection, achieving detection limitsfor these two methodsof 107 pmol/L and 347 pmol/L, respectively. Unlike other single-mode sensorsfor UO22+ detection, this dual-mode sensor demonstrated superior sensitivity, specificity, and repeatability. Furthermore, the results of spiked recovery experiments in real water samples highlight the promising potential of this dual-mode sensor for environmental water monitoring applications.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
39788 Articles
Published in last 50 years
Related Topics
Articles published on Low Detection Limit
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
38897 Search results
Sort by Recency