The use of wheel skidders for timber extraction from tree stump to roadside landing has become more and more widespread. Although the use of wheel skidders has the advantages of high production and reduced extraction costs, it also damages the soil and impedes forest regeneration. The main purpose of this study was to investigate the effect of machine traffic using the Timberjack 450C (two, six and 15 passes) on two slope classes (SC) of skid trails. A low slope is considered to be <20% and a high slope is at >20%. The effects on soil physicochemical properties and seedling growth (alder, Alnus subcordata C.A. Mey. and maple, Acer velutinum Boiss.) in natural mixed beech stands in the Hyrcanian forests in Northern Iran were observed and studied. The results showed that the different factors of traffic intensity (TI) and SC had a significant impact on soil physicochemical properties and subsequent seedling growth. After two machine passes in a low TI on both low and high slopes, soil bulk density (BD) increased by 49.3% and 59.2% and penetration resistance increased by 30.5% and 38.5%, while total porosity decreased by 19.5% and 23.5%. The forest floor decreased by 30.9% and 42%, organic carbon decreased by 25.6% and 39.4%, nitrogen decreased by 18.5% and 26.3%, phosphorus decreased by 14.1% and 23%, and potassium decreased by 10.7% and 24.2%, respectively as compared with the control area. Our results indicated additional BD increments after two, six and 15 machine passes of 49.3%, 17.9% and 8.3% in the low slope, respectively, and 59.2%, 16.5% and 7.1% in the high slope, respectively. The mean of the germination rate (GR) of alder and maple seedlings in the control area was 58.3% and 46.1%, respectively, while after two, six and 15 passes, the GR of alder seedlings reduced to 50%, 46.4% and 37.5%, respectively, while that of maple seedlings reduced to 36.1%, 28.6% and 25.6%, respectively. Additionally, after two machine passes, stem length, main root length, and total dry biomass decreased by 28.7%, 34.9% and 34% in alder seedlings, respectively, and 27.9%, 27.6% and 33.3% in maple seedlings, respectively. Comparison of the response of the two seedling species to soil compaction showed that although alder had a higher GR than maple, the root growth of maple was higher than that of alder.
Read full abstract