Environmental factors such as light and temperature tightly regulate plant flowering time. Under stressful conditions, plants inhibit vegetative growth and accelerate flowering as an emergency response. This adaptive mechanism benefits the survival of species and enhances their reproductive success. This phenomenon is often referred to as stress escape. However, the signaling pathways between low-temperature signals and flowering time are poorly understood. In this study, the MIKC transcription factor, CaSOC1, was isolated from pepper (Capsicum annuum), which showed suppressed expression under low-temperature conditions. Silencing the expression of CaSOC1 in pepper plants resulted in reduced photosynthetic capacity, inhibited vegetative growth, and increased sensitivity to low temperatures. In contrast, overexpression of CaSOC1 increased the biomass of tomato plants under normal growth conditions but suppressed their antioxidant enzyme activity at low temperatures, which negatively regulated their cold tolerance. Furthermore, intermittent low-temperature treatment with CaSOC1 overexpression promoted early flowering in tomato plants. Our findings demonstrate that CaSOC1 reduced the cold tolerance of pepper plants under short term low-temperature conditions, whereas intermittent low-temperature treatment enhanced flower bud differentiation, enabling stress escape and adaptation to long low-temperature environments.
Read full abstract