The pore fracture structure of deep coal reservoirs is crucial for evaluating the potential of deep coalbed methane resources, conducting exploration and development, and controlling coal mine gas disasters. Mercury intrusion porosimetry, the liquid nitrogen method, and the low-temperature carbon dioxide adsorption method were used to study the full pore size structure and pore fractal characteristics of different coal grades in deep coal and comprehensively characterize the pore structure of kilometer-level coal mining. The sponge, Frenkel–Halsey–Hill (FHH), and density function models were applied to comprehensively analyze the pore complexity of coal, and the influence of metamorphic degree on pore size structure was evaluated. The distribution relationship of pore volume in different stages of coal samples was macropore→mesopore→micropore, and macropores had the best connectivity. Micropores and mesopores had the largest specific surface area, and the development of micropores and microcracks controlled the deep gas adsorption performance. The micropore volume and specific surface area both revealed a nonlinear decreasing trend with the increase in volatile matter, and coal metamorphism promoted the development of micropores. The pore volume and specific surface area of mesopores and macropores decreased first and then increased in a “U” shape with increasing volatile matter. In contrast, the fractal dimension D1 revealed an inverted U shape with increasing volatile matter, followed by a decrease. The D2 value decreased nonlinearly with increasing volatile matter, whereas the D3 value increased nonlinearly with increasing volatile matter. The degree of metamorphism increased, and the microporous structure became more regular.