Objective The study presented focuses on the creation of a machine learning (ML) model that uses electrophysiological (EEG) data to identify kids with attention deficit hyperactivity disorder (ADHD) from healthy controls. The EEG signals are acquired during cognitive tasks to distinguish children with ADHD from their counterparts. Methodology The EEG data recorded in cognitive exercises was filtered using low pass Bessel filter and notch filters to remove artifacts, by the data set owners. To identify unique EEG patterns, we used many well-known classifiers, including Naïve Bayes (NB), Random Forest, Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), AdaBoost and Linear Discriminant Analysis (LDA), to identify distinct EEG patterns. Input features comprised EEG data from nineteen channels, individually and in combination. Findings Study indicates that EEG-based categorization can differentiate between individuals with ADHD and healthy individuals with accuracy of 84%. The RF classifier achieved a maximum accuracy of 0.84 when particular region combinations were used. Evaluation of classification performance utilizing hemisphere-specific EEG data yielded promising outcomes, particularly in the right hemisphere channels. Novelty The study goes beyond traditional methodologies by investigating the effect of regional data on categorization results. The contributions of various brain regions to these classifications are being extensively researched. Understanding the role of different brain regions in ADHD can lead to better diagnosis and treatment options for individuals with ADHD. The study of categorization ability, utilizing EEG data specific to each hemisphere, particularly channels in the right hemisphere region, provides further granularity to the findings.