We analyzed the dc SQUID with voltage feedback circuit (VFC) and a low-noise room-temperature preamplifier to evaluate the feasibility of a low-noise SQUID direct-coupled readout scheme (DRS), possibly eliminating the need for a two-stage scheme employing a SQUID preamplifier. The passive VFC, connected in parallel to the SQUID, consists of a resistor Rs in series with an inductor Ls. This inductor is coupled to the SQUID by a mutual inductance Ms. The purpose of the VFC is to increase the SQUID’s flux-to-voltage transfer coefficient ∂V/∂Φ, thus reducing the preamplifier noise contribution δΦpreamp. However, at the same time, VFC introduces the thermal noise of Rs, δΦR, which may not be negligible. Generally, the noise of the readout scheme, δΦreadout, may thus include both δΦpreamp and δΦR, i.e., δΦreadout2 = δΦpreamp2 + δΦR2. To characterize the SQUID operation with VFC we introduced two dimensionless parameters, r = Rs/Rd and Δ = (Ms/Mdyn) − (Rs/Rd), where Rd and Mdyn = 1/(∂i/∂Φ) are dynamic properties of the SQUID itself. For assumed intrinsic SQUID parameters, we then numerically analyzed the dependence of δΦreadout noise components on r and Δ to determine their suitable ranges and the minimum of δΦreadout. To verify our analysis, we experimentally characterized, in liquid helium, three niobium SQUIDs with VFC, having suitably chosen r and Δ. The measured SQUID system flux noise was on the order of 1 μΦ0/√Hz, comparable to the intrinsic noise of the SQUID itself. The deduced equivalent voltage noise was comparable to that of a SQUID preamplifier in the two-stage readout. Simple single-stage ultra-low-noise SQUID DRS readout was thus demonstrated.