Anthropogenic environmental change is introducing a suite of novel disturbance factors, which can have wide-ranging effects on mean behavior and behavioral repeatability. For example, exposure to sensory pollutants, such as anthropogenic noise and artificial light at night (ALAN), may affect consistent and repeatable individual-level timing of daily activity, which is referred to as chronotypes. Although chronotypes have been increasingly documented in wild animal populations and may affect fitness, evidence for long-term stability across life-history stages and seasons is notably lacking. Furthermore, how multiple anthropogenic stressors may interact to erode or magnify the expression of chronotypes remains unclear. We tested for existence of chronotypes across life-history stages and seasons in suburban female great tits (Parus major), using emergence time from nest boxes in the morning as a proxy for activity onset. We then examined joint effects of noise pollution and ALAN on expression of chronotypes, and tested for effects of noise, ALAN, and weather conditions on mean emergence time. We found repeatability of daily activity patterns (emergence times) across life-history stages and seasons, providing evidence of chronotypes, as well as interactive effects of anthropogenic disturbance factors and weather conditions on population mean behavior. Furthermore, across-season repeatability of emergence times was approximately double in magnitude in low light and low noise conditions, relative to in conditions with higher light and/or noise pollution. Thus, joint exposure to these sensory pollutants tends to erode expression of chronotypes. This effect was driven by higher among-individual variance in the relatively undisturbed environment and collapse of this variance in the more disturbed environments. Decreased repeatability in environments with high disturbance levels may reduce potential for behavioral traits, such as chronotype, to be the target of selection and limit adaptability.
Read full abstract