During the manufacturing of therapeutic antibodies, effective Protein A chromatography as initial column step is crucial to simplify the remaining purification effort for subsequent polishing steps. This is particularly relevant for molecules with high impurity content so that desired product purity can be attained. The present study demonstrates beneficial effects on impurity removal when applying kosmotropic salts, e.g., sodium sulfate or sodium chloride, in the elution phase. Initially, a screen using negative linear pH gradient elution evaluated the impact of the kosmotropic salts in comparison to no additive and chaotropic urea using three mAbs and three common resins. Retaining acceptable yield, the kosmotropic salts improved resolution of monomer and impurities and reduced the contents of process-related host cell proteins and DNA as well as of product-related low and high molecular weight forms, despite some resin- and mAb-dependent variations. Moreover, a decrease in hydrolytic activity measured by a new assay for polysorbase activity was observed. In contrast, urea was hardly effective. The findings served to establish optimized step elution conditions with 0.25 M of sodium sulfate for a challenging mAb with complex format (bispecific 2 + 1 CrossMab) displaying high relative hydrophobicity and impurity levels. With yield and purity both in the range of 90 %, the contents of all impurity components were reduced, e.g., low molecular weight forms by two-fold and polysorbase activity by four-fold. The study indicates the potential of kosmotropic salts to establish efficient and comprehensive impurity separation by Protein A for facilitated downstream processing and economic manufacturing of complex antibodies.
Read full abstract