The current study involves an ab initio exploration of the ground and low-lying excited electronic states of the rhodium halide molecules RhF and RhCl using the complete active space self-consistent field (CASSCF) with multireference configuration interaction (MRCI+Q) method including single and double excitations and with Davidson corrections. We investigated the potential energy curves, the transition and permanent electric dipole moments, the electronic energy relative to the ground state Te, the harmonic frequency ωe, the internuclear distance Re, and the rotational constant Be corresponding to each of the bounded states. Our findings demonstrate good agreement with the available experimental data. Notably, this work represents the inaugural theoretical investigation of the excited states of RhF and RhCl molecules, identifying the ground state of both to be X3Π, as observed in the sole two experimental investigations.