This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.