BackgroundThe current evidence regarding the association between long-term exposure to ozone (O3) and hypertension incidence is limited and inconclusive, particularly at low O3 concentrations. Therefore, our research aims to investigate the potential link between long-term O3 exposure and hypertension in a region with low pollution levels. MethodsFrom 2010 to 2012, we conducted a cohort prospective study by recruiting nearly 10,000 attendees through multistage cluster random sampling in Guizhou Province, China. These individuals were followed up from 2016 to 2020, and 5563 cases were finally included in the analysis. We employed a high-resolution model with both temporal and spatial accuracy to estimate the maximum daily 8-h average O3 and utilized annual average O3 concentrations for three exposure periods (2009_10, 2007_10, 2005_10) as the exposure indicator. Time-dependent covariates Cox regression model was exerted to estimate the hazard ratios (HRs) of hypertension incidence. Generalized linear model was employed to assess the association between O3 and systolic, diastolic, pulse, and mean arterial pressure. The dose-response curve was explored using a restricted cubic spline function. Results1213 hypertension incidents occurred during 39,001.80 person-years, with an incidence density of 31.10/1000 Person Years (PYs). The average O3 concentrations during the three exposure periods were 66.76 μg/m3, 67.85 μg/m3, and 67.21 μg/m3, respectively. Per 1 μg/m3 increase in O3 exposure was associated with 11 % increase in the incidence of hypertension in the single-pollution model, and the association was more pronounced in Han, urban, and higher altitude areas. SBP, PP, and MAP were increased by 0.619 (95 % CI, 0.361–0.877) mm Hg, 0.477 (95 % CI, 0.275–0.679) mm Hg, 0.301 (95 % CI, 0.127–0.475) mm Hg, respectively. Furthermore, we observed a nonlinear exposure-response relationship between O3 and hypertension incidence. ConclusionsLong-term exposure to low-level O3 exposure is associated with an increased risk of hypertension.
Read full abstract