Due to the high mortality rate, more effective non-invasive diagnostic methods are still needed for lung cancer, the most common cause of cancer-related death worldwide. In this study, the integration of Raman and Fourier-transform infrared spectroscopy with advanced data-fusion techniques is investigated to improve the detection of lung cancer from human blood plasma samples. A high statistical significance was found for important protein-related oscillations, which are crucial for differentiating between lung cancer patients and healthy controls. The use of low-level data fusion and feature selection significantly improved model accuracy and emphasizes the importance of structural protein changes in cancer detection. Although other biomolecules such as carbohydrates and nucleic acids also contributed, proteins proved to be the decisive markers found using this technique. This research highlights the power of these combined spectroscopic methods to develop a non-invasive diagnostic tool for discriminating lung cancer from healthy state, with the potential to extend such studies to a variety of other diseases.
Read full abstract