Numerous studies have demonstrated that under low-velocity, low-energy impact conditions, although the surface damage to fiber-reinforced composite laminates may be minimal, significant internal damage can occur. Consequently, a progressive damage finite element model was specifically developed for thermoplastic carbon fiber-reinforced composite laminates subjected to low-speed impact loads, with the objective of analyzing the damage behavior of laminates under impacts of varying energy levels. The model utilizes a three-dimensional Hashin criterion for predicting intralayer damage initiation, with cohesive elements based on bilinear traction-separation law for predicting interlaminar delamination initiation, and incorporates a damage constitutive model based on equivalent displacement to characterize fiber damage evolution, along with the B-K criterion for interlaminar damage evolution. The impact response of laminates at energy levels of 5 J, 10 J, 15 J, 20 J, and 25 J was analyzed through numerical simulation, drop-hammer experiments, and XCT non-destructive testing. The results indicated that the simulation outcomes closely correspond with the experimental findings, with both the predicted peak error and absorbed energy error maintained within a 5% margin, and the trends of the mechanical response curves aligning closely with the experimental data. The damage patterns predicted by the numerical simulations were consistent with the results obtained from XCT scans. The study additionally revealed that the impact damage of the laminates primarily stems from interlaminar delamination and intralayer tensile failure. Initial damage typically presents as internal delamination; hence, enhancing interlaminar bonding performance can significantly augment the overall load-bearing capacity of the laminate.
Read full abstract