Cervical cancer remains a significant global health concern, ranking as the fourth most prevalent cancer among women worldwide. Human papillomaviruses (HPV) transcribe many genes that might be responsible for cervical cancer development. This study aims to investigate the correlation between the expression of HPV16 early genes and the mRNA expression of human FOXO3a, a tumor suppressor gene, in association with various stages of cervical precancerous lesions. Eighty-five positive HPV16 DNA cervical swab samples were recruited and categorized based on cytology stages, i.e., negative for intraepithelial lesion or malignancy (NILM), atypical squamous cells of undetermined significance (ASC-US), low-grade squamous intraepithelial lesion (LSIL), atypical squamous cell cannot exclude HSIL (ASC-H), high-grade squamous intraepithelial lesion (HSIL). RT-qPCR was performed to amplify HPV16E1, E4, E6, E6*I, E7, and human FOXO3a mRNA expression in all samples. The relative expression of those genes was calculated using GAPDH as a control. Detection of FOXO3a mRNA expression in the cervical cancer cell line by RT-qPCR and meta-analysis of FOXO3a expression using the RNA-Seq dataset by GEPIA2 were analyzed to support the conclusions. Among the cervical samples, HPV16E1 and E7 were significantly increased expression correlating to disease severity. HPV16E4 mRNA expression was 100% detected in all LSIL samples, with a significant increase observed from normal to LSIL stages. Conversely, FOXO3a mRNA expression decreased with disease severity, and the lowest expression was observed in HSIL/squamous cell carcinoma (SCC) samples. In addition, similar results of FOXO3a downregulation were also found in the cervical cancer cell line and RNA-Seq dataset of cervical cancer samples. HPV16 early mRNA levels, including E1 and E7, increase during cancer progression, and downregulation of FOXO3a mRNA is a characteristic of cervical cancer cells and HSIL/SCC. Additionally, HPV16E4 mRNA expression was consistently detected in all LSIL samples, suggesting the presence of active viral replication. These findings might lead to further investigation into the interplay between HPV gene expression and host cell factors for targeted therapeutic strategies in cervical cancer management.
Read full abstract