Sonochemical decomposition effects of nickelocene, which sublimates easily were investigated to synthesize dispersant-free nickel fine particles at low temperature. In a hydrazine monohydrate and 2-propanol mixed solvent, the reduction of nickelocene was promoted by ultrasound irradiation, and nickel fine particles were synthesized while precluding the sublimation of nickelocene. Unlike the common hydrazine reduction of nickel salts, which requires multiple-step reactions, nickelocene was reduced directly without forming intermediates. The effect of the water-bath temperature (20–60 °C) was investigated, where larger fine particles were synthesized using a higher water-bath temperature (60 °C). When irradiated at 20 °C, the reduction rate of nickelocene was low, leading to the formation of nickel fine particles and organic nanoparticles via the reduction and decomposition of nickelocene. The ultrasound frequency was also investigated, where fine nickel particles were synthesized using low-frequency ultrasound irradiation. The formation of high-temperature hotspots led to the diffusion and growth of nickel on the surface of the nickel fine particles; therefore, raspberry-like nickel fine particles were synthesized. In this study, the difficult-to-handle nature of nickelocene, owing to its sublimation properties, was easily overcome by ultrasound irradiation. Instantaneous and localized reactions at hotspots contributed to inhibiting particle growth. Furthermore, Ni fine particles were synthesized via a direct reduction pathway, which differs from previous reactions. This method represents a new, dispersant-free, low-temperature process for synthesizing Ni fine particles.
Read full abstract