An optimized bidirectional pumping fiber amplifier is demonstrated to achieve low-frequency intensity noise suppression and effective power enhancement simultaneously. Based on the concept analysis of the gain saturation effect, the influence of input signal power and pump power on intensity noise suppression is investigated and optimized systematically. Further combining with the optimization of the pumping configuration to achieve the even-distribution gain, the relative intensity noise (RIN) of 1083 nm single-frequency fiber laser (SFFL) is suppressed with 9.1 dB in the frequency range below 10 kHz. Additionally, the laser power is boosted from 10.97 dBm to 25.02 dBm, and a power instability of ±0.31% is realized. This technology has contributed to simultaneously improving the power and noise performance of the 1083 nm SFFL, which can be applied to a multi-channel helium (He) optically pumping magnetometer. Furthermore, this technique has broken the mindset that power amplification of the conventional fiber amplifiers will inevitably cause the degradation of intensity noise property, and provided a valuable guidance for the development of high-performance SFFLs.
Read full abstract