Exopolysaccharide produced by lactic acid bacteria has various functions. In the present study, one anti-oxidant polysaccharide fraction, namely S1-EPS, was extracted and purified from Pediococcus acidilactici S1, and its structure and its potential effect on the gel properties of fat substitute meat mince were investigated. The results showed that S1-EPS, one of homogeneous polysaccharides, was mainly composed of Gal, Glc, and Man in molar ratio of 7.61: 15.25: 77.13 and molecular weight of 46.975 kDa. The backbone of EPS-S1 contained →2,6)-α-D-Manp-(1→,→2)-α-D-Manp-(1→,→3)-α-D-Glcp-(1 → and a small amount of→6)-β-D-Manp-(1→. The linkages of branches in EPS-S1 were mainly composed of α-D-Manp-(1→ attached to a sugar residue →2,6)-α-D-Manp-(1→O-2 or β-D-Galp-(1→ attached to a sugar residue →2,6)-α-D-Manp-(1→O-6. Furthermore, as S1-EPS increased, the meat minced gel pores decreased, and the surface became smooth. A remarkable inhibitory effect on the lipid oxidation of meat minced gel was found as S1-EPS concentration increased. Overall, S1-EPS was found to have substantial potential in low-fat meat products by serving as a natural, anti-oxidant, and functional additive.