It is highly necessary to fabricate cost-effective counter electrode for promoting the development and practical deployment of dye-sensitized solar cells (DSSCs). Herein, nitrogen and sulfur co-doped porous carbon (NSPC) is prepared through directly carbonizing a renewable biomass, Eupatorium fortunei Turcz., and used as an alternative to expensive Pt to fabricate low-cost counter electrode for high-performance DSSCs. Scanning electron microscopy and N2 adsorption analyses demonstrate that the obtained carbon sample displays a hierarchical pore structure containing macropore channels and well-developed mesopores formed on the wall of macropore channels. X-ray photoelectron spectroscopy measurements suggest that nitrogen and sulfur atoms are doped in the framework of as-prepared carbon sample. These favorable characteristics endow the obtained NSPC counter electrode with a superior electrocatalytic performance. Consequently, the assembled DSSC with NSPC counter electrode shows an efficiency of 8.25%, nearly matching the efficiency of the cell with conventional Pt counter electrode.
Read full abstract