A novel fast and efficient algorithm was proposed that uses the Fast Fourier Transform (FFT) as a tool to compute the Discrete Wavelet Transform (DWT) and Discrete Multiwavelet Transform. The Haar Wavelet Transform and the GHM system are shown to be a special case of the proposed algorithm, where the discrete linear convolution will adapt to achieve the desired approximation and detail coefficients. Assuming that no intermediate coefficients are canceled and no approximations are made, the algorithm will give the exact solution. Hence the proposed algorithm provides an efficient complexity verses accuracy tradeoff. The main advantages of the proposed algorithm is that high band and the low band coefficients can be exploited for several classes of signals resulting in very low computation.
Read full abstract