Epidermal growth factor receptor ligands (EGFRLs) consist of seven proteins. In stark contrast to the amassed knowledge concerning the epidermal growth factor receptors themselves, the extracellular dynamics of individual EGFRLs remain elusive. Here, employing fluorescent probes and a tool for triggering ectodomain shedding of EGFRLs, we show that EREG, a low-affinity EGFRL, exhibits the most rapid and efficient activation of EGFR in confluent epithelial cells and mouse epidermis. In Madin-Darby canine kidney (MDCK) renal epithelial cells, EGFR- and ERK-activation waves propagate during collective cell migration in an ADAM17 sheddase- and EGFRL-dependent manner. Upon induction of EGFRL shedding, radial ERK activation waves were observed in the surrounding receiver cells. Notably, the low-affinity ligands EREG and AREG mediated faster and broader ERK waves than the high-affinity ligands. The integrity of tight/adherens junctions was essential for the propagation of ERK activation, implying that the tight intercellular spaces prefer the low-affinity EGFRL to the high-affinity ligands for efficient signal transmission. To validate this observation in vivo , we generated EREG-deficient mice expressing the ERK biosensor and found that ERK wave propagation and cell migration were impaired during skin wound repair. In conclusion, we have quantitatively demonstrated the distinctions among EGFRLs in shedding, diffusion, and target cell activation in physiological contexts. Our findings underscore the pivotal role of low-affinity EGFRLs in rapid intercellular signal transmission.