Objective- The distinction of snoring and loud breathing is often subjective and lies in the ear of the beholder. The aim of this study is to identify and assess acoustic features with a high suitability to distinguish these two classes of sound, in order to facilitate an objective definition of snoring based on acoustic parameters. Methods- A corpus of snore and breath sounds from 23 subjects has been used that were classified by 25 human raters. Using the openSMILE feature extractor, 6 373 acoustic features have been evaluated for their selectivity comparing SVM classification, logistic regression, and the recall of each single feature. Results- Most selective single features were several statistical functionals of the first and second mel frequency spectrum-generated perceptual linear predictive (PLP) cepstral coefficient with an unweighted average recall (UAR) of up to 93.8%. The best performing feature sets were low level descriptors (LLDs), derivatives and statistical functionals based on fast Fourier transformation (FFT), with a UAR of 93.0%, and on the summed mel frequency spectrum-generated PLP cepstral coefficients, with a UAR of 92.2% using SVM classification. Compared to SVM classification, logistic regression did not show considerable differences in classification performance. Conclusion- It could be shown that snoring and loud breathing can be distinguished by robust acoustic features. The findings might serve as a guidance to find a consensus for an objective definition of snoring compared to loud breathing.
Read full abstract