Assessing membrane protein stability is among the major challenges in protein science due to their inherent complexity, which complicates the application of conventional biophysical tools. In this work, sodium dodecyl sulfate-induced denaturation of AfCopA, a Cu(I)-transport ATPase from Archaeoglobus fulgidus, was explored using a combined model-free spectral phasor analysis and a model-dependent thermodynamic analysis. Decrease in tryptophan and 1-anilino-naphthalene-8-sulfonate fluorescence intensity, displacements in the spectral phasor space, and the loss of ATPase activity were reversibly induced by this detergent. Refolding from the SDS-induced denatured state yields an active enzyme that is functionally and spectroscopically indistinguishable from the native state of the protein. Phasor analysis of Trp spectra allowed us to identify two intermediate states in the SDS-induced denaturation of AfCopA, a result further supported by principal component analysis. In contrast, traditional thermodynamic analysis detected only one intermediate state, and including the second one led to overparameterization. Additionally, ANS fluorescence spectral analysis detected one more intermediate and a gradual change at the level of the hydrophobic transmembrane surface of the protein. Based on this evidence, a model for acquiring the native structure of AfCopA in a membrane-like environment is proposed.
Read full abstract