Dams require continuous security and monitoring programs, integrated with visual inspection and testing in dam surveillance programs. New approaches for dam monitoring focus on multi-sensor integration, taking into account emerging technologies such as GNSS, optic fiber, TLS, InSAR techniques, GBInSAR, GPR, that can be used as complementary data in dam monitoring, eliciting causes of dam deformation that cannot be assessed with traditional techniques. This paper presents a Multi-temporal InSAR (MT-InSAR) monitoring of La Viñuela dam (Málaga, Spain), a 96 m height earth-fill dam built from 1982 to 1989. The presented MT-InSAR monitoring system comprises three C-band radar (~5,7 cm wavelength) datasets from the European satellites ERS-1/2 (1992-2000), Envisat (2003-2008), and Sentinel-1A/B (2014-2018). ERS-1/2 and Envisat datasets were processed using StaMPS. In the case of Sentinel-1A/B, two different algorithms were applied, SARPROZ and ISCE-SALSIT, allowing the comparison of the estimated LOS velocity pattern. The obtained results confirm that LaViñuela dam is deforming since its construction, as an earth-fill dam. Maximum deformation rates were measured in the initial period (1992-2000), being around -7 mm/yr (LOS direction) on the coronation of the dam. In the period covered by the Envisat dataset (2003-2008), the average deforming pattern was lower, of the order of -4 mm/yr. Sentinel-1A/B monitoring confirms that the deformation is still active in the period 2014-2018 in the central-upper part of the dam, with maximums of velocity reaching -6 mm/yr. SARPROZ and ISCE-SALSIT algorithms provide similar results. It was concluded that MT-InSAR techniques can support the development of new and more effective means of monitoring and analyzing the health of dams complementing actual dam surveillance systems.
Read full abstract