We consider spaces introduced by N. K. Karapetyants and B. S. Rubin in 1982, to characterize, in particular, the image of the fractional integral Riemann–Liouville operator. These spaces lie near L∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${L}^{\\infty }$$\\end{document}. We show that they coincide with well-known Lorentz–Zygmund spaces. This allows us to reformulate one result from N. K. Karapetyants and B. S. Rubin dealing with Riemann–Liouville fractional integral operator J0+α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${J}_{0+}^{\\alpha }$$\\end{document} defined on Lp0,1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${L}^{p}\\left(\ ext{0,1}\\right)$$\\end{document} (1<p<∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1<p<\\infty$$\\end{document}) in the borderline case α=1/p\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha =1/p$$\\end{document}. Using of the well-developed theory of Lorentz–Zygmund spaces leads to new results on the fractional integral Riemann–Liouville operator.
Read full abstract