China has made notable advancements in the intelligent construction of coal mines. However, for longwall top coal caving (LTCC) mining faces, a key obstacle impeding the intelligent transition of the coal-cutting process is automated control. This paper focuses on the aforementioned issue and comprehensively considers the pre-, intra-, and post-coal-caving stages. In this work, diverse detection and monitoring technologies are integrated at various stages through a computer platform, facilitating the construction of an automated coal caving control system with self-perception, self-learning, self-decision-making, and self-execution capabilities. Key technologies include ground-penetrating radar-based top coal thickness detection, inertial navigation-based shearer positioning, tail beam vibration-based identification of coal and gangue, and magnetostrictive sensor-based monitoring of the tail beam and insert plate attitude. In this study, the 12309 working face of the Wangjialing Coal Mine was experimentally validated, and the efficacy of the aforementioned key technologies was assessed. The results demonstrated that the control requirements for automated coal caving are satisfied by the maximum errors. Automatic regulation of coal caving was realized through the implementation of this system, thereby facilitating initiation and cessation and yielding promising experimental outcomes. Overall, this system offers practical insights for intelligent construction in current LTCC mining faces and the sustainable development of coal resources.