When unidirectional fiber reinforced composites are subjected to longitudinal tensile loading and reach a critical failure state, they experience a sudden transition from local damage to catastrophic failure, commonly termed as an avalanche event. This paper integrates the self-organized criticality theory (SOC) concepts into the prediction of longitudinal tensile strength of composites and establishes a strength prediction model of composites based on the renormalization group method (RGM). The predictions of the RGM model are successfully validated against experimental results in the literatures, and it demonstrates relatively acceptable predictive accuracy compared to classical strength criteria. Compared to other state-of-the-art prediction models considering stochastic fiber strength distribution, the RGM model effectively provides strength statistics for fiber bundles of any size and describes the occurrence of composites avalanche failure induced by local stress concentration. This present model can be very conveniently implemented as a User Material Subroutine (UMAT) for finite simulations, facilitating practical prediction of the strength of composites structures.
Read full abstract