Objectives: Pathogenic organisms utilize iron to survive and replicate and have evolved many processes to extract iron from human hosts. The goal of this study was to elucidate the impact of iron supplementation given in the setting of acute infection. Methods: This was a retrospective cohort study of Veterans Affairs patients who received intravenous antibiotics for pneumonia or skin and skin structure infections. Five-thousand subjects were included in each of the 2 cohorts: iron-receiving and non-iron-receiving. Data was analyzed using Fischer's Exact test if categorical and independent t-tests if continuous. Primary and secondary objectives analyzed with Cox proportional hazard regression and outcome rates estimated utilizing Kaplan-Meier method. Results: Five-thousand patients were included in each cohort. The iron cohort was significantly older (Mean-years: Iron = 71.6, No-iron = 68.9; mean-difference = 2.7, P < .0001) with reduced renal function (Mean-eGFR[mL/min/1.73 m²]: Iron = 67.2, No-iron = 77.4; mean-difference = 10.2, P < .0001). For the primary outcome, the iron cohort had a significantly longer mean length of hospital stay (10.4 days) compared to the no-iron cohort (8.7 days) (mean difference 1.7 days, P < .0001). Secondary outcome analysis showed the iron cohort received intravenous antibiotics for longer (Iron = 8.2 days, No-iron = 7.1 days; mean-difference = 1.1 days, P < .0001) with a higher proportion of 30-day readmissions (Iron = 15.6%, No-iron = 12.8%; proportion difference = 2.8%, P < .0001). No significant difference was found between cohort proportions for 30-day mortality (Iron = 12.7%, No-iron = 11.3%, proportion difference = 1.4%, P = .052). Conclusions: Baseline characteristic differences between cohorts is representative of patients who would be expected to require iron replacement therapy. Given the magnitude of primary and secondary-outcomes, further studies controlling for these factors would be warranted.
Read full abstract