Achieving high charging rates (≤ 15 min) in lithium-ion batteries (LIBs) is imperative for their widespread implementation in all-electric vehicles. However, the pursuit of elevated charging rates often leads to compromises in capacity and cycling stability. In this manuscript, we present a groundbreaking approach utilizing a composite material composed of nitrogen-doped carbon-encapsulated Li2TiSiO5 nanoparticles (LTSO@C-N) as the anode material for LIBs, offering rapid and exceptionally stable lithium storage. The encapsulation of Li2TiSiO5 nanoparticles by nitrogen-doped carbon is realized via a facile liquid-phase polymerization and the following pyrolysis route. The uniformly deposited nitrogen-doped carbon layer on the surface of Li2TiSiO5 nanoparticles within LTSO@C-N serves a dual purpose: enhancing the conductive properties of Li2TiSiO5 to ensure efficient charge transfer and Li+ transport, while concurrently inhibiting grain pulverization over extended cycling periods. The deliberate incorporation of nitrogen-doped carbon optimizes Li2TiSiO5 anode electrochemical performance, simultaneously reducing structural degradation during prolonged cycling. This enhances the lithium-ion battery system's long-term stability and reliability. While exhibiting an average operational potential of approximately 0.28 V in comparison to Li+/Li, the LTSO@C-N electrode manifests a commendable specific capacity of 345 mAh g-1 at a current density of 0.1 A g-1. Notably, it attains a robust lithium storage capability even under high-rate conditions, exemplified by a sustained capacity of 205 mAh g-1 over 1000 cycles at 2 A g-1, devoid of any discernible decay. The electrode's impressive electrochemical performance highlights its potential as an advanced anode for high-performance lithium-ion batteries, ensuring stability.
Read full abstract