Sustainable food provision for a continuously growing human population is one of the major challenges for the next decades. Cultured meat represents one of the alternatives which is currently extensively explored. Yet, the most appropriate cell type, capable of long-term proliferation and myogenic differentiation, remains to be identified. Bovine mesenchymal stromal cells (MSCs) are considered as a promising cell source. Within the context of cultured meat production, it is mandatory to maximize cell yield per tissue source. Although many enzymatic methods to isolate MSCs from adipose tissue (AT) have been described, cell yield has never been compared. In this study, we evaluate 32 isolation conditions including four enzyme mixtures (Collagenase type I, Collagenase type I + Trypsin, LiberaseTM and Collagenase type IV) at varying concentrations and incubation times, regarding their efficiency to isolate MSCs from bovine subcutaneous AT. The highest cell yield in combination with a low population doubling time was obtained using LiberaseTM at a concentration of 0.1% for 3 h. MSC identity of the cells was confirmed by tri-lineage differentiation potential and cell surface marker expression. Subsequently, isolated cells were myogenically differentiated using 5-aza-2’-deoxycytidine and galectin-1. mRNA levels of the myogenic regulatory factors (MRF) myogenic factor 5 (MYF5), myogenic differentiation 1 (MYOD1), MYF6, and myogenin (MYOG) were increased, while less paired box 3 (PAX3) mRNA expression was observed when compared to undifferentiated MSCs. The presence of desmin (DES), tropomyosin (TM), and myosin heavy chain (MyHC) in myogenically differentiated bovine AT-MSCs was confirmed using immunofluorescence stainings. When considering MSCs from bovine AT as potential cell source to produce cultured meat, it is recommended to use 0.1% LiberaseTM for 3 h to ensure a high cell yield.