Long-Term Evolution (LTE) technology is utilized efficiently for wireless broadband communication for mobile devices. It provides flexible bandwidth and frequency with high speed and peak data rates. Optimizing resource allocation is vital for improving the performance of the Long-Term Evolution (LTE) system and meeting the user’s quality of service (QoS) needs. The resource distribution in video streaming affects the LTE network performance, reducing network fairness and causing increased delay and lower data throughput. This study proposes a novel approach utilizing an artificial neural network (ANN) based on normalized radial basis function NN (RBFNN) and generalized regression NN (GRNN) techniques. The 3rd Generation Partnership Project (3GPP) is proposed to derive accurate and reliable data output using the LTE downlink scheduling algorithms. The performance of the proposed methods is compared based on their packet loss rate, throughput, delay, spectrum efficiency, and fairness factors. The results of the proposed algorithm significantly improve the efficiency of real-time streaming compared to the LTE-DL algorithms. These improvements are also shown in the form of lower computational complexity.