As wearable devices in the fields of medical health, human–computer interaction, and motion detection continue to diversify in their materials and forms, they show vast application potential. Cellulose materials are emerging as prominent materials for fabricating flexible wearable electronic devices because of their favorable skin compatibility, cost-effectiveness, and abundance. However, there is little research on the use of kapok cellulose in wearable electronics. This study addresses this knowledge gap by exploring the high-yield production and waste recycling potential of kapok cellulose. To overcome the limitations of conventional cellulose films, such as poor flexibility, high haze, and limited light transmittance, a kapok cellulose nanofiber film (KCNF) with a transparency of > 90 % and a tensile strain of > 20 % is prepared. The use of the KCNF as a friction electric material in the triboelectric nanogenerator (TENG) improves its electrical output performance by 228 % and permits its comfortable long-term attachment to the skin for self-powered tactile sensing applications, including game control, text input, and smart medical devices. This study demonstrates that the exploration of KCNF materials expands the options available for developing wearable electronic devices with numerous potential applications.
Read full abstract