In this work, PM2.5 was sampled at Dunkerque, a medium-sized city located in northern France. The mean concentration of PM2.5 during the sampling period was 12.6 ± 9.5 μg·m−3. Samples were analyzed for elemental and organic carbon (EC/OC), water-soluble organic carbon (WSOC), humic-like substances (HULIS-C), water-soluble inorganic ions, and major and trace elements. The origin and the variations of species concentrations were examined using elemental enrichment factors, bivariate polar plot representations, and diagnostic concentration ratios. Secondary inorganic ions were the most abundant species (36% of PM2.5), followed by OC (12.5% of PM2.5). Secondary organic carbon (SOC) concentrations were estimated to account for 52% of OC. A good correlation between SOC and WSOC indicated that secondary formation processes significantly contribute to the WSOC concentrations. HULIS-C also represents almost 50% of WSOC. The determination of diagnostic ratios revealed the influence of anthropogenic emission sources such as integrated steelworks and fuel oil combustion. The clustering of 72 h air masses backward trajectories data evidenced that higher concentrations of PM2.5, OC, and secondary inorganic aerosols were recorded when air masses came from north-eastern Europe and the French continental sector, showing the considerable impact of long-range transport on the air quality in northern France.
Read full abstract