Terrestrial Radar Interferometry (TRI) is widely adopted in geomonitoring applications due to its capability to precisely observe surface displacements along the line of sight, among other key characteristics. As its deployment grows, TRI is also increasingly used to monitor smaller and more dispersed geological phenomena, where the challenge is their precise localization in 3d space if the pose of the radar interferometer is not known beforehand. To tackle this challenge, we introduce a semi-automatic target-based georeferencing method for precisely aligning TRI data with 3d point clouds obtained using long-range Terrestrial Laser Scanning (TLS). To facilitate this, we developed a multi-modal corner reflector (mmCR) that serves as a common reference point recognizable by both technologies, and we accompanied it with a semi-automatic data-processing pipeline, including the algorithms for precise center estimation. Experimental validation demonstrated that the corner reflector can be localized within the TLS data with a precision of 3–5 cm and within the TRI data with 1–2 dm. The targets were deployed in a realistic geomonitoring scenario to evaluate the implemented workflow and the achievable quality of georeferencing. The post-georeferencing mapping uncertainty was found to be on a decimeter level, matching the state-of-the-art results using dedicated targets and achieving more than an order of magnitude lower uncertainty than the existing data-driven approaches. In contrast to the existing target-based approaches, our results were achieved without laborious visual data inspection and manual target detection and on significantly larger distances, surpassing 2 km. The use of the developed mmCR and its associated data-processing pipeline extends beyond precise georeferencing of TRI imagery to TLS point clouds, allowing for alternatively georeferencing using total stations, mapping quality evaluation as well as on-site testing and calibrating TRI systems within the application environment.
Read full abstract