Background: The growing concern for environmental and social issues has led to a focus on designing sustainable supply chains and increasing industrial responsibility towards society. In this paper, a multi-objective mixed-integer programming model is presented for designing a sustainable closed-loop supply chain. The model is aimed at the minimization of the total cost with the total used facilities, the negative environmental impacts, and the maximization of the positive social impacts. Methods: The epsilon-constraint method is utilized for solving the model and further extracting the Pareto solutions. Results: The result of the research clearly shows an optimal trade-off between the conflicting objectives, where, by paying more attention to the social and environmental aspects of sustainability, the total costs are increased or by optimizing the number of facilities, a better balance between the dynamics associated with the short-term and long-term goals is reached. The results of the sensitivity analysis also show that increasing the demand of the supply chain has the greatest impact on the supply chain costs compared to other objectives. Conclusions: Consequently, investigating such comprehensive sustainable objectives provides better insights into the impact of design variables on the expectations of stakeholders.
Read full abstract