Design flood estimation is an essential step in many water engineering design tasks such as the planning and design of infrastructure to reduce flood damage. Flood frequency analysis (FFA) is widely used in estimating design floods when the at-site flood data length is adequate. One of the problems in FFA with an annual maxima (AM) modeling approach is deciding how to handle smaller discharge values (outliers) in the selected AM flood series at a given station. The objective of this paper is to explore how the practice of censoring (which involves adjusting for smaller discharge values in FFA) affects flood quantile estimates in FFA. In this regard, two commonly used probability distributions, log-Pearson type 3 (LP3) and generalized extreme value distribution (GEV), are used. The multiple Grubbs and Beck (MGB) test is used to identify low-flow outliers in the selected AM flood series at 582 Australian stream gauging stations. It is found that censoring is required for 71% of the selected stations in using the MGB test with the LP3 distribution. The differences in flood quantile estimates between LP3 (with MGB test and censoring) and GEV distribution (without censoring) increase as the return period reduces. A modest correlation is found (for South Australian catchments) between censoring and the selected catchment characteristics (correlation coefficient: 0.43), with statistically significant associations for the mean annual rainfall and catchment shape factor. The findings of this study will be useful to practicing hydrologists in Australia and other countries to estimate design floods using AM flood data by FFA. Moreover, it may assist in updating Australian Rainfall and Runoff (national guide).
Read full abstract