With the development of 5th-Generation Mobile Communication (5G) technology and the deployment of low-Earth orbit satellites, using satellites to locate 5G radiation sources is of great significance in commerce and the military as an important task of integrated sensing and communication. Recently, passive virtual aperture technology has been introduced into passive location to improve accuracy, but the existing method, using matched filters to search the Doppler information to realize the location, has the disadvantages of high complexity and poor range resolution. In this paper, an improved 5G radiation source location based on a virtual aperture is proposed, which uses the improved Golden Section search-fractional Fourier algorithm (GSS-FRFT) to improve the existing passive virtual aperture location methods. First, the received signals are coherently accumulated to convert the time gain into spatial gain, and the subcarrier phase information is extracted by Fast Fourier Transform based on the 5G signal characteristics to obtain the azimuth signal. Then, an improved high-order GSS-FRFT algorithm is proposed to analyze the Doppler information, and signal focusing and satellite ephemeris data are used to estimate the effective velocity and solve the radiation source location. The simulation results show that the proposed method can improve the location accuracy compared with other single-satellite location methods and has high resolution, high accuracy and low complexity compared with the existing passive virtual aperture location method.
Read full abstract