Caveolae, consisting of caveolin-1 proteins, are ubiquitously present in endothelial cells and contribute to normal cardiovascular functions by acting as a platform for cellular signaling pathways as well as transcytosis and endocytosis. However, caveolin-1 is thought to have a proatherogenic role by inhibiting endothelial nitric oxide synthase activity and Nrf2 activation, or by promoting inflammation through NF-κB activation. Dietary polyphenols were suggested to exert anti-atherosclerotic effects by a mechanism involving the inhibition of endothelial dysfunction, by which they can regulate redox-sensitive signaling pathways in relation to NF-κB and Nrf2 activation. Some monomeric polyphenols and microbiota-derived catabolites from monomeric polyphenols or polymeric tannins might be responsible for the inhibition, because they can be transferred into the circulation from the digestive tract. Several polyphenols were reported to modulate caveolin-1 expression or its localization in caveolae. Therefore, we hypothesized that circulating polyphenols affect caveolae functions by altering its structure leading to the release of caveolin-1 from caveolae, and attenuating redox-sensitive signaling pathway-dependent caveolin-1 overexpression. Further studies using circulating polyphenols at a physiologically relevant level are necessary to clarify the mechanism of action of dietary polyphenols targeting caveolae and caveolin-1.
Read full abstract