The seminal paper of Francfort and Marigo (1998) introduced a variational formulation for Griffith fracture (Griffith, 1920) that has resulted in substantial theoretical and practical progress in modeling and simulating fracture. In particular, it led to the phase-field approximation proposed in Bourdin et al. (2000), which has been widely implemented. However, the formulation in Francfort and Marigo (1998) is known to have limitations, including its inability to treat applied loads and its reliance on global minimization. In addition, the phase-field model (Bourdin et al., 2000) and its extensions, as implemented, are not generally approximations of the global minimizers in Francfort and Marigo (1998). In this paper, we show that there is a local variational principle satisfied by global and local minimizers of the energy introduced in Francfort and Marigo (1998), which is compatible with loads, and which is a generalization of the stress intensity factor. We use this principle to reformulate variational fracture, including formulations that, for the first time, can include all forms of applied loads. We conclude by showing the connection between phase-field models, as implemented, and our formulations.
Read full abstract