Simple SummaryEwing sarcoma is a highly aggressive malignancy affecting primarily children and adolescents. It is the second most common bone sarcoma among children, affecting between 1 and 3 persons per million inhabitants. The tumor typically carries a pathognomonic chromosomal translocation resulting in a fusion transcript (EWSR1-FLI1), which plays an orchestral role in tumor development. While the fusion transcript has been known for decades, targeted treatment has been disappointing. However, new molecular techniques such as next-generation sequencing have significantly increased our understanding of this rare disease. Moreover, new closely related tumors with similar morphology but different characteristics have evolved. Treatment today consists of multiagent chemotherapy, radiation treatment, and surgery, all of which are associated with significant short- and long-term side effects. In this review article, we describe the currently existing diagnostic- and treatment-related challenges as well as the most important ongoing or recently conducted studies.Ewing sarcoma is the second most common bone sarcoma in children after osteosarcoma. It is a very aggressive malignancy for which systemic treatment has greatly improved outcome for patients with localized disease, who now see survival rates of over 70%. However, for the quarter of patients presenting with metastatic disease, survival is still dismal with less than 30% of patients surviving past 5 years. Patients with disease relapse, local or distant, face an even poorer prognosis with an event-free 5-year survival rate of only 10%. Unfortunately, Ewing sarcoma patients have not yet seen the benefit of recent years’ technical achievements such as next-generation sequencing, which have enabled researchers to study biological systems at a level never seen before. In spite of large multinational studies, treatment of Ewing sarcoma relies entirely on chemotherapeutic agents that have been largely unchanged for decades. As many promising modern therapies, including monoclonal antibodies, small molecules, and immunotherapy, have been disappointing to date, there is no clear candidate as to which drug should be investigated in the next large-scale clinical trial. However, the mechanisms driving tumor development in Ewing sarcoma are slowly unfolding. New entities of Ewing-like tumors, with fusion transcripts that are related to the oncogenic EWSR1-FLI1 fusion seen in the majority of Ewing tumors, are being mapped. These tumors, although sharing much of the same morphologic features as classic Ewing sarcoma, behave differently and may require a different treatment. There are also controversies regarding local treatment of Ewing sarcoma. The radiosensitive nature of the disease and the tendency for Ewing sarcoma to arise in the axial skeleton make local treatment very challenging. Surgical treatment and radiotherapy have their pros and cons, which may give rise to different treatment strategies in different centers around the world. This review article discusses some of these controversies and reproduces the highlights from recent publications with regard to diagnostics, systemic treatment, and surgical treatment of Ewing sarcoma.
Read full abstract