We construct the most general four-dimensional N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 supergravity coupled to an arbitrary number n of vector multiplets in which the global scaling symmetry is gauged, in addition to a subgroup of SL(2, ℝ) × SO(6, n). The various gaugings are parametrized by an embedding tensor built out of 2n+63+4n+6\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ 2\\left(\\begin{array}{c}n+6\\\\ {}3\\end{array}\\right)+4\\left(n+6\\right) $$\\end{document} parameters that satisfy a specific set of quadratic consistency constraints, to which we provide explicit solutions. We also derive the local supersymmetry transformation rules and the equations of motion for the four-dimensional N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = 4 matter-coupled supergravity with local scaling symmetry. Such supergravity theories do not possess an action, since the scaling symmetry is only an on-shell symmetry of the corresponding ungauged theories.
Read full abstract