A widely known property of lipid membranes is their tendency to undergo a separation into disordered (Ld) and ordered (Lo) domains. This impacts the local structure of the membrane relevant for the physical (e.g., enhanced electroporation) and biological (e.g., protein sorting) significance of these regions. The increase in computing power, advancements in simulation software, and more detailed information about the composition of biological membranes shifts the study of these domains into the focus of classical molecular dynamicssimulations. In this chapter, we present a versatile yet robust analysis pipeline that can be easily implemented and adapted for a wide range of lipid compositions. It employs Gaussian-based Hidden Markov Modelsto predict the hidden order states of individual lipids by describing their structure through the area per lipid and the average SCC order parameters per acyl chain. Regions of the membrane with a high correlation between ordered lipids are identified by employing the Getis-Ord local spatial autocorrelation statistic on a Voronoi tessellation of the lipids. As an example, the approach is applied to two distinct systems at a coarse-grained resolution, demonstrating either a strong tendency towards phase separation (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DIPC), cholesterol) or a weak tendency toward phase separation (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PUPC), cholesterol). Explanations of the steps are complemented by coding examples written in Python, providing both a comprehensive understanding and practical guidance for a seamless integration of the workflow into individual projects.
Read full abstract