Interpolation of aliased seismic data constitutes a key step in a seismic processing workflow to obtain high-quality velocity models and seismic images. Building on the idea of describing seismic wavefields as a superposition of local plane waves, we propose to interpolate seismic data by using a physics informed neural network (PINN). In the proposed framework, two feed-forward neural networks are jointly trained using the local plane wave differential equation as well as the available data as two terms in the objective function: a primary network assisted by positional encoding is tasked with reconstructing the seismic data, whereas an auxiliary, smaller network estimates the associated local slopes. Results on synthetic and field data validate the effectiveness of the proposed method in handling aliased (coarsely sampled) data and data with large gaps. Our method compares favorably against a classic least-squares inversion approach regularized by the local plane-wave equation as well as a PINN-based approach with a single network and precomputed local slopes. We find that introducing a second network to estimate the local slopes, whereas at the same time interpolating the aliased data enhances the overall reconstruction capabilities and convergence behavior of the primary network. Moreover, an additional positional encoding layer embedded as the first layer of the wavefield network confers to the network the ability to converge faster, improving the accuracy of the data term.