ConspectusElectrides make up a fascinating group of materials with unique physical and chemical properties. In these materials, excess electrons do not behave like normal electrons in metals or form any chemical bonds with atoms. Instead, they "float" freely in the gaps within the material's structure, acting like negatively charged particles called anions (see the graph). Recently, there has been a surge of interest in van der Waals (vdW) electrides or electrenes in two dimensions. A typical example is layered lanthanum bromide (LaBr2), which can be taken as [La3+(Br1-)2]+•(e-). Each excess free electron is trapped within a hexagonal pore, forming dense dots of electron density. These anionic electrons are loosely bound, giving vdW electrides some unique properties such as ferromagnetism, superconductivity, topological features, and Dirac plasmons. The high density of the free electron makes electrides very promising for applications in thermionic emission, organic light-emitting diodes, and high-performance catalysts.In this Account, we first discuss the discovery of numerous vdW electrides through high-throughput computational screening of over 67,000 known inorganic crystals in Materials Project. A dozen of them have been newly discovered and have not been reported before. Importantly, they possess completely different structural prototypes and properties of anionic electrons compared to widely studied electrides such as Ca2N. Finding these new vdW electrides expands the variety of electrides that can be made in the experiment and opens up new possibilities for studying their unique properties and applications.Then, based on the screened vdW electrides, we delve into their various emerging properties. For example, we developed a new magnetic mechanism specific to atomic-orbital-free ferromagnetism in electrides. We uncover the dual localized and extended nature of the anionic electrons in such electrides and demonstrate the formation of the local moment by the localized feature and the ferromagnetic interaction by the direct overlapping of their extended states. We further show the effective tuning of the magnetic properties of vdW electrides by engineering their structural, electronic, and compositional properties. Besides, we show that the complex interaction between the multiple quantum orderings in vdW electrides leads to many interesting properties including valley polarization, charge density waves, a topological property, a superconducting property, and a thermoelectrical property.Moreover, we discuss strategies to leverage the unique intrinsic properties of vdW electrides for practical applications. We show that these properties make vdW electrides potential candidates for advanced applications such as spin-orbit torque memory devices, valleytronic devices, K-ion batteries, and thermoelectricity. Finally, we discuss the current challenges and future perspectives for research using these emerging materials.