Urban environments are warmer than the rural surroundings, impacting plant phenotypic traits. When plants are present over areas with contrasted conditions such as along urbanization gradients, their phenotypes may differ, and these differencesdepend on different processes, including phenotypic plasticity, maternal environmental effects and genetic differentiation (local adaptation and/or genetic drift). Successful establishment of alien species along environmental gradients has been linked to high phenotypic plasticity and rapid evolutionary responses, which are easier to track for species with a known residence time. The mechanisms explaining trait variation in plants in urban versus rural microclimatic conditions have received little attention. Using the alien Veronica persica as model species, we measured leaf traits in urban and rural populations and performed a reciprocal common-garden experiment to study how germination, leaf, growth, and flowering traits varied in response to experimental microclimate (rural or urban) and population origin environment (rural or urban). Veronica persica displayed phenotypic plasticity in all measured traits, with reduced germination, development, and flowering under urban microclimate which suggests more stressful growing conditions in the urban than in the rural microclimate. No significant effect of the rural or urban origin environment was detected, providing no evidence for local adaptation to urban or rural environments. Additionally, we found limited signs of maternal environmental effects. We noted the importance of the mother plant and the population identities suggesting genetically based differences. Our results indicate that urban environments are more hostile than rural ones, and that V. persica does not show any adaptation to urban environments despite genetic differences between populations.