The formation of flaws such as internal porosity in parts produced by Metal-based Powder Bed Fusion with Laser Beam (PBF-LB/M) significantly hinders its broader industrial application, as porosity can potentially lead to part failure. Addressing this issue, this study explores the efficacy of in-situ thermography, particularly short-wave infrared thermography, for detecting and predicting porosity during manufacturing. This technique is capable of monitoring the part’s thermal history which is closely connected to the flaw formation process. Recent advancements in Machine Learning (ML) have been increasingly leveraged for porosity prediction in PBF-LB/M. However, previous research primarily focused on global rather than localized porosity prediction which simplified the complex prediction task. Thereby, the opportunity to correlate the predicted flaw position with expected part strain to judge the severity of the flaw for part performance is neglected. This study aims to bridge this gap by studying the potential of SWIR thermography for predicting local porosity levels using regression models. The models are trained on data from two identical HAYNES®282® specimens. We compare the effectiveness of feature-based and raw data-based models in predicting different porosity types and examine the importance of input data in porosity prediction. We show that models trained on SWIR thermogram data can identify systematic trends in local flaw formation. This is demonstrated for forced flaw formation using process parameter shifts and, moreover, for randomly formed flaws in the specimen bulk. Furthermore, we identify features of high importance for the prediction of lack-of-fusion and keyhole porosity from SWIR monitoring data.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access